مقایسه سه شدت متفاوت تمرینی بر بیان پروتئین LSDP5، سطوح سرمی گلوکز و انسولین رت‌های دیابتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم ورزشی، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشیار، گروه علوم ورزشی، دانشگاه شهرکرد، شهرکرد، ایران

3 دانشیار، گروه علوم ورزشی، دانشگاه شهرکرد، شهرکرد، ایران.

4 استادیار، گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهرکرد، شهرکرد، ایران.

چکیده

مقدمه: اختلال متابولیسم چربی در ایجاد دیابت و مقاومت به انسولین در عضلات اسکلتی نقش دارد. از طرفی فعالیت بدنی بر لیپولیز درون عضلانی تاثیرگذار است. Lipid storage droplet protein 5 از پروتئین‌های مهم در تنظیم لیپولیز سلول‌های عضلانی است. هدف از این مطالعه مقایسه سه شدت متفاوت تمرینی بر بیان پروتئین LSDP5، سطوح سرمی گلوکز و انسولین رت‌های دیابتی است.
 مواد و روش‌ها‌: تعداد 32 سر رت نر نژاد ویستار به ‌صورت تصادفی به چهار گروه مساوی شامل سه گروه تمرینی (گروه تمرین استقامتی کم شدت، شدت متوسط و گروه با تمرین تداومی با شدت بالا) و یک گروه کنترل تقسیم شدند. پس از دیابتی کردن رت­ها با تزریق درون صفاقی استرپتوزوسین، تمرین استقامتی به مدت هشت هفته، سه جلسه در هفته اعمال شد. گروه کنترل مداخله‌ای دریافت نکردند. بیان نسبی LSDP5 با تکنیک Western blot انجام شد. معنی‌دار بودن تفاوت بین متغیرها توسط آزمون آماری تحلیل واریانس یک‌طرفه و آزمون تعقیبی توکی تعیین شد.
یافته‌ها: اختلاف معنی‌داری بین چهار گروه در متغیرهای LSDP5  مشاهده شد (03/0=p). تفاوت بین دو گروه کنترل دیابتی و گروه دیابتی تمرین با شدت بالا معنی­دار بود (019/0=p) اما تفاوت معنی‌داری در میزان LSDP5 در گروه تمرین کم شدت و شدت متوسط نسبت به گروه کنترل وجود نداشت (به ترتیب 64/0=p و  45/0=p).
نتیجه‌گیری: با توجه به نتایج می‌توان به تأثیر تمرینات استقامتی با شدت بالا بر افزایش بیان پروتئین LSDP5 در نمونه‌های دیابتی اشاره کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Survey on Comparison of three Different Training Intensities on Expression of LSDP5 Protein, Serum Levels of Glucose and Insulin in Diabetic Rats

نویسندگان [English]

  • M Ghafari 1
  • E Banitalabi 2
  • M Faramarzi 3
  • A Mohebi 4
1 Assistant Prof, Dept of Sport Sciences, Shahrekord University, Shahrekord, Iran.
2 Associate prof, Dept of Sport Sciences, Shahrekord University, Shahrekord, Iran.
3 Associate prof, Dept of Sport Sciences, Shahrekord University, Shahrekord, Iran.
4 Assistant prof, Dept of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University. Shahrekord, Iran.
چکیده [English]

Introduction: Lipid metabolism disorder plays an important role in diabetes and insulin resistance in skeletal muscles. On the other hand, intramuscular lipolysis can be affected by physical activities. Lipid storage droplet protein 5 (LSDP5) (is one of the important proteins involving in regulation of muscle lipolysis. Therefore, the aim of this study was to compare the three different training intensities on expression of LSDP5 protein, serum glucose and insulin levels in diabetic rats.
Materials and Methods: Thirty two male Wistar rats were randomly divided into four groups of 8 including three intervention groups;  with low- moderate- and  high-intensity endurance training and a control group. In all four groups, diabetes mellitus was induced by intraperitoneal injection of streptozotocin, 55 mg/kg and endurance training was applied three times a week for eight weeks and the control group received nothing. The expression of the LSDP5 protein was analyzed by Western blot technique. To determine the significance of differences between the groups, the results were analyzed using one-way ANOVA and Tukey post-hoc test.
Results: There was a significant difference was observed between four groups in LSDP5 variables (p = 0.03). There was a significant difference between diabetic controls group and high intensity group (p = 0.019), but there was no significant difference in LSDP5 in the low intensity and moderate intensity training group (respectively p = 0.64 and p = 0.45).
Conclusion: According to the results, high intensity endurance exercise increased protein expression LSDP5 in diabetic samples.

کلیدواژه‌ها [English]

  • Diabetes
  • LDSP5 protein
  • Endurance Training
  • insulin resistance
  1. Rahbarian R. Investigating the effects of aqueous extract of asafoetida resin on the serum level of insulin and blood glucose in type 1 diabetic rats. JSUMS 2014;16(3):16-21.[Persian]
  2. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. DRCP 2014;103(2):137-49.
  3. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012;148(5):852-71.
  4. Sitnick MT, Basantani MK, Cai L, Schoiswohl G, Yazbeck CF, Distefano G, et al. Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes 2013; 62(10): 3350-61.
  5. Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. JAP 2010;108(5):1134-41.
  6. Bruce C, Kriketos A, Cooney G, Hawley J. Disassociation of muscle triglyceride content and insulin sensitivity after exercise training in patients with Type 2 diabetes. Diabetologia 2004;47(1):23-30.
  7. Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C, et al. LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. BBACBL 2007;1771(2):210-27.
  8. Yamaguchi T, Matsushita S, Motojima K, Hirose F, Osumi T. MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor α. JBC 2006;281(20):14232-40.
  9. Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, et al. Perilipin 5, lipid droplet associated protein provides physical and metabolic linkage to mitochondria. JLR 2011;52(12): 2159-68.
  10. Mason RR, Watt MJ. Unraveling the roles of PLIN5: linking cell biology to physiology. Trends in Endocrinology & Metabolism 2015;26(3):144-52.
  11. Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, et al. PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Molecular metabolism 2014;3(6):652-63.
  12. van Loon LJ. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. JAP 2004;97(4):1170-87.
  13. Louche K, Badin P-M, Montastier E, Laurens C, Bourlier V, De Glisezinski I, et al. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. JCEM 2013;98(12):4863-71.
  14. Shepherd SO, Cocks M, Tipton K, Ranasinghe AM, Barker TA, Burniston JG, et al. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. The Journal of physiology 2013;591(3):657-75.
  15. Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of physiology 2012;590(5):1077-84.
  16. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. JAP 2005;98(6):1985-90.
  17. Amati F, Dubé JJ, Carnero EA, Edreira MM, Chomentowski P, Coen PM, et al. Skeletal-muscle triglycerides, diacylglycerols, and ceramides in insulin resistance: another paradox in endurance-trained athletes? Diabetes 2011;60(10): 2588-97.
  18. Kim D-H, Kim S-H, Kim W-H, Moon C-R. The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. JENB 2013;17(4):199-207.
  19. Kuramoto K, Sakai F, Yoshinori N, Nakamura TY, Wakabayashi S, Kojidani T, et al. Deficiency of a lipid droplet protein, perilipin 5, suppresses myocardial lipid accumulation, thereby preventing type 1 diabetes-induced heart malfunction. MCB 2014 ;34(14): 2721-31.
  20. MacPherson RE, Herbst EA, Reynolds EJ, Vandenboom R, Roy BD, Peters SJ. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle. AJPRICP 2011;302(1): 29-36.
  21. Ramos SV, MacPherson RE, Turnbull PC, Bott KN, LeBlanc P, Ward WE, et al. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiological reports 2014;2(10):1-12.
  22. Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA. Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. APNM 2012;37(4):724-35.
  23. Mason RR, Meex RC, Russell AP, Canny BJ, Watt MJ. Cellular localization and associations of the major lipolytic proteins in human skeletal muscle at rest and during exercise. PloS one 2014;9(7):e103062.
  24. Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, Van Loon LJ. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. AJPEM 2012;303(9):E1158-E65.
  25. Phillips D, Caddy S, Ilic V, Fielding B, Frayn K, Borthwick A, et al. Intramuscular triglyceride and muscle insulin sensitivity: evidence for a relationship in nondiabetic subjects. Metabolism 1996;45(8):947-50.
  26. Bosma M, Hesselink MK, Sparks LM, Timmers S, Ferraz MJ, Mattijssen F, et al. Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabetes 2012;61(11): 2679-90.
  27. De Bock K, Richter EA, Russell A, Eijnde BO, Derave W, Ramaekers M, et al. Exercise in the fasted state facilitates fibre type‐specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. The Journal of physiology 2005;564(2):649-60.
  28. van Loon LJ, Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH. Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance‐trained males in a fasted state. The Journal of physiology 2003;553(2):611-25.
  29. Stellingwerff T, Boon H, Jonkers RA, Senden JM, Spriet LL, Koopman R, et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. AJPEM 2007;292(6):E1715-E23.
  30. Horowitz JF, Klein S. Lipid metabolism during endurance exercise. AJCN 2000;72(2):558S-63S.
  31. Molanouri SHM, Mahdavi  M, Gharakhanlou R,Hasani MZ. Effect of Intensive Resistance Exercise Training on Protein Expression of IL-6, IL-1β and TNF-α myokines in fast twitch skeletal muscle of diabetic rats. JEB 2014; 6(11): 69-77.
  32. Dan M, Chantler JK. A novel pancreatropic coxsackievirus vector expressing glucagon-like peptide 1 reduces hyperglycemia in streptozotocin-treated mice. Journal of virology 2011;85(23): 12759-68.
  33. Ivy JL. Role of exercise training in the prevention and treatment of insulin resistance and non-insulin-dependent diabetes mellitus. Sports medicine1997;24(5):321-36.
  34. Ramos SV, Turnbull PC, MacPherson RE. Adipose tissue depot specific differences of PLIN protein content in endurance trained rats. Adipocyte 2016;5(2):212-23.