تأثیر تمرین استقامتی تداومی بر پروتئین تروپومدولین-2 نخاع موش‌های صحرایی نر مبتلا به نوروپاتی دیابتی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار، گروه علوم ورزشی، دانشکده ادبیات و علوم انسانی، دانشگاه ولی عصر (عج) ، رفسنجان، ایران . مرکز تحقیقات علوم اعصاب، پژوهشکده نوروفارماکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران.

چکیده

مقدمه: کاهش ظرفیت نوزایش عصبی اصلی­ترین عامل درگیر در نوروپاتی دیابت است. یکی از پروتئین­های درگیر در مخروط رشد آکسونی، تروپومودولین-2 (TMOD2) است. این پروتئین، تنظیم کننده شکل­گیری نورون است. بدین منظور هدف از پژوهش حاضر، بررسی تأثیر تمرین استقامتی تداومی بر میزان پروتئین TMOD2 بافت نخاع رت­های صحرایی نر مبتلا به نوروپاتی دیابتی بود.
 مواد و روش ­ها: مطالعه حاضر از نوع تجربی است. برای این منظور، 44 سر رت نر ویستار به‌طور تصادفی به چهار گروه (سالم کنترل، سالم تمرین، دیابت کنترل و دیابت تمرین) تقسیم شدند. القای دیابت با تزریق درون صفاقی محلول استرپتوزوسین (45 میلی‌گرم/کیلوگرم) انجام شد. دو هفته بعد از تزریق استرپتوزوسین، برنامه تمرین استقامتی تداومی با شدت 70-60 درصد Vo2max به ‌مدت شش هفته اجرا شد. سپس رت‌ها تشریح و نورون‌های حسی L4-L6 بافت نخاع استخراج گردید. بررسی بیان پروتئین TMOD2 نیز با روش ایمونوهیستوشیمی صورت گرفت. به منظور تجزیه و تحلیل داده­ها از آنالیز واریانس یک طرفه استفاده شد.
یافته ­ها: نتایج اندازه­گیری­های رفتاری، ایجاد مدل نوروپاتی دیابت را نشان داد. همچنین تفاوت معنی­داری در سطوح پروتئین TMOD2 بافت نخاع بین گروه­های سالم کنترل و دیابت کنترل (004/0p=) و نیز بین گروه­های سالم کنترل و دیابت تمرین (012/0p=) مشاهده شد.
نتیجه­ گیری: تمرین استقامتی، اثرات محافظتی را در برابر نوروپاتی دیابت ایجاد می­کند. این سازوکار محافظتی تمرین استقامتی می­تواند به عنوان یک روش مؤثر در کاهش عوارض ناشی از دیابت در سیستم عصبی مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Continuous Endurance Training on the Level of TMOD2 Protein in the Spinal Cord of Wistar Male Rats with Diabetic Neuropathy

نویسنده [English]

  • A Kazemi
Associate Prof, Dept of Physical Education, Faculty of Literature & Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran. Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
چکیده [English]

Introduction: The reduction in neurogenesis capacity is the main factor involved in diabetic neuropathy. Tropomodulin 2 (TMOD2) is one of the new outgrowth proteins which play a potential role in axonal growth. This protein regulates the formation of the neuron. In this regard, this study examined the effect of continuous endurance training on the level of TMOD2 in the spinal cord tissue of Wistar male rats with diabetic neuropathy.
Materials and Methods: This is an experimental study in which 44 Wistar male rats were randomly divided into four groups (healthy control, healthy exercise, diabetes control and diabetes exercise). Induction of diabetes was performed by intraperitoneal injection of the streptozotocin solution (45 mg / kg). Two weeks after the streptozotocin injection, a continuous endurance training program with a 50% -55% Vo2max intensity was performed for six weeks. Then the rats were dissected, and sensory neurons L4-L6 were extracted from the spinal cord. The protein expression was performed by immunohistochemistry. One-way ANOVA tests were used to compare the differences between the groups.
Results: The results of behavioral measurements indicated the development of a diabetic neuropathy model. Also, a significant difference in the level of TMOD2 was seen between the experimental groups, healthy control, and diabetes control (p=0.004), healthy control and diabetes exercise (p=0.012).
Conclusions: Endurance exercise training provides protective effects against diabetic neuropathy. This neuroprotective mechanism of physical activity can be considered as an effective way to reduce the nervous system complications of diabetes.

کلیدواژه‌ها [English]

  • Diabetic Neuropathy
  • Endurance Training
  • TMOD2
  1. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes care 2017;40(1):136-54.
  2. Javed S, Petropoulos IN, Alam U, Malik RA. Treatment of painful diabetic neuropathy. Therapeutic advances in chronic disease 2015;6(1):15-28.
  3. Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. Journal of diabetes investigation 2018;9(6):1239-54.
  4. Dale P, George JA, David F, William CH, Anthony-Samuel L, Jameso M, et al. Neuroscience. Yale J Biol Med. 2013; 86(1): 113–11.
  5. Ma C-L, Ma X-T, Wang J-J, Liu H, Chen Y-F, Yang Y. Physical exercise induces hippocampal neurogenesis and prevents cognitive decline. Behavioural brain research 2017;317:332-9.
  6. Omotade OF, Pollitt SL, Zheng JQ. Actin-based growth cone motility and guidance. Molecular and Cellular Neuroscience 2017;84:4-10.
  7. Boczkowska M, Rebowski G, Kremneva E, Lappalainen P, Dominguez R. How Leiomodin and Tropomodulin use a common fold for different actin assembly functions. Nature communications 2015;6:8314.
  8. Sussman MA, Sakhi S, Tocco G, Najm I, Baudry M, Kedes L, et al. Neural tropomodulin: developmental expression and effect of seizure activity. Developmental brain research 1994;80(1-2):45-53.
  9. Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain research bulletin 2016;126:311-23.
  10. Wei M, Ong L, Smith MT, Ross FB, Schmid K, Hoey AJ, et al. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart, Lung and Circulation 2003;12(1):44-50.
  11. Chae C-H, Kim H-T. Forced, moderate-intensity treadmill exercise suppresses apoptosis by increasing the level of NGF and stimulating phosphatidylinositol 3-kinase signaling in the hippocampus of induced aging rats. Neurochemistry international 2009;55(4):208-13.
  12. Cruccu G, Anand P, Attal N, Garcia‐Larrea L, Haanpää M, Jørum E, et al. EFNS guidelines on neuropathic pain assessment. European journal of neurology 2004;11(3):153-62.
  13. Tjølsen A, Hole K. Tail-Flick test. Encyclopedia of Pain 2013:3832-7.
  14. Kazemi A, Rahmati M, Eslami R, Sheibani V. Activation of neurotrophins in lumbar dorsal root probably contributes to neuropathic pain after spinal nerve ligation. Iranian journal of basic medical sciences 2017;20(1):29.
  15. Kerendi H, Rahmati M, Mirnasuri R, Kazemi A. High intensity interval training decreases the expressions of KIF5B and Dynein in Hippocampus of Wistar male rats. Gene 2019;704:8-14.
  16. Atalay M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. Journal of sports science & medicine 2002;1(1):1-14.
  17. Hong J-H, Kim M-J, Park M-R, Kwag O-G, Lee I-S, Byun BH, et al. Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clinica chimica acta 2004;340(1-2):107-15.
  18. Ang E, Wong P, Moochhala S, Ng Y. Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 2003;118(2):335-45.
  19. Aguiar Jr AS, Castro AA, Moreira EL, Glaser V, Santos AR, Tasca CI, et al. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mechanisms of ageing and development 2011;132(11-12):560-7.
  20. Cox PR, Zoghbi HY. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 2000;63(1):97-107.
  21. Fath T, Fischer RS, Dehmelt L, Halpain S, Fowler VM. Tropomodulins are negative regulators of neurite outgrowth. European journal of cell biology 2011;90(4):291-300.
  22. Yang J, Czech T, Felizardo M, Baumgartner C, Lubec G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino acids 2006;30(4):477-93.
  23. Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, VanPatter M, et al. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain research 2010;1358:172-83.
  24. Pearson-Fuhrhop KM, Kleim JA, Cramer SC. Brain plasticity and genetic factors. Topics in stroke rehabilitation 2009;16(4):282-99.
  25. Kleim JA, Cooper NR, VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain research 2002;934(1):1-6.
  26. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience 2011;12(10):585-601.
  27. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences 2007;104(13):5638-43.
  28. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009;19(10):1030-9.
  29. Prior BM, Yang H, Terjung RL. What makes vessels grow with exercise training? Journal of applied physiology 2004;97(3):1119-28.
  30. Rhyu I, Bytheway J, Kohler S, Lange H, Lee K, Boklewski J, et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 2010;167(4):1239-48.
  31. Gao Y, Nikulina E, Mellado W, Filbin MT. Neurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase. Journal of Neuroscience 2003;23(37):11770-7.
  32. Ying Z, Roy RR, Edgerton VR, Gómez-Pinilla F. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Experimental neurology 2005;193(2):411-9.
  33. Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, Geller AI, et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Molecular and Cellular Neuroscience 1996;7(3):222-38.
  34. Molteni R, Ying Z, Gómez-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience 2002;16(6):1107-16.
  35. Hötting K, Röder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neuroscience & Biobehavioral Reviews 2013;37(9):2243-57.