مقایسه تأثیر دو شیوه تمرینی مقاومتی دایره‌ای و عملکردی شدید بر عوامل‏ فعال‌کننده سلول‌های ‏ماهواره‌ای ( MyoD‎‏و‏ Myf-5‎)در مردان جوان غیرورزشکار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

2 استادیار، گروه علوم ورزشی، دانشکده علوم انسانی، واحد خمینی شهر، دانشگاه آزاد اسلامی، اصفهان، ایران.

10.22123/chj.2023.370550.1963

چکیده

مقدمه: سلول‌های ماهواره‌ای سلول‌های بنیادی خاص عضلات هستند که در ترمیم و بازسازی عضلات اسکلتی ضروری می‌باشند. مطالعه حاضر با هدف مقایسه تأثیر دو شیوه تمرینی مقاومتی دایره‌ای و عملکردی شدید بر عوامل فعال‌کننده سلول‌های ‏ماهواره‌ای (MyoD‎‏ و‏ Myf-5‎) در مردان جوان غیرورزشکار انجام شد.
مواد و روش‌ها: در این مطالعه نیمه‌تجربی، با طرح پیش‌آزمون- پس‌آزمون با گروه کنترل، از بین مردان جوان غیرورزشکار شهر اصفهان در سال 1401، 45 نفر به ‌صورت در دسترس انتخاب و به ‌طور تصادفی به سه گروه تمرینات عملکردی شدید، تمرینات مقاومتی دایره‌ای و کنترل تقسیم شدند. پروتکل‌های تمرینی در 8 هفته (هر هفته سه جلسه 40 تا 50 دقیقه‌ای) انجام گرفت. خون‌گیری جهت ارزیابی بیان ژن‌های MyoD‎‏ و Myf-5‎‏ در دو مرحله (24 ساعت قبل از شروع تمرین و 48 ساعت ‏پس از آخرین جلسه تمرینی) انجام شد.‏ میزان بیان متغیرها به روش الایزا برآورد شد. داده‌ها توسط آزمون‌های کوواریانس و تعقیبی بنفرونی تحلیل شدند.
 یافته‌ها: هر دو روش تمرینی بر افزایشMyoD ‎‏ و Myf-5‎‏ تأثیر معنی‌داری داشتند (001/0=p)، ولی بهبود این متغیرها در گروه تمرین عملکردی شدید نسبت به گروه تمرین مقاومتی دایره‌ای بیشتر بود (041/0=p).
نتیجه‌گیری: نتایج نشان‌دهنده تأثیر هر دو روش تمرینی بر افزایش بیانMyoD ‎‏ و ‏ Myf-5است. این افزایش در تمرینات عملکردی شدید بیشتر بود. توصیه می‌شود؛ ‏مربیان، ورزشکاران و سایر مسئولین درگیر در تمرینات ورزشی از این روش‌ها، به‌ویژه تمرینات عملکردی شدید برای پیشرفت اجرا‌های ورزشی، و بهبود عوامل فعال‌کننده سلول‌های ‏ماهواره‌ای استفاده نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of the Effect of Circular Resistance Training and High-Intensity Functional Training on Activating Factors of Satellite Cells (MyoD ‎‏and‏ Myf-5‎) in Non-Athlete Young Men

نویسندگان [English]

  • E Soltanian 1
  • A Arabmomeni 2
1 MSc Student, Dept of Sports Physiology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
2 Assistant Prof, Dept of Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran.
چکیده [English]

Introduction: Satellite cells are the primary stem cells in skeletal muscle responsible for postnatal muscle growth, hypertrophy, and regeneration. The present study compared the effect of two methods of circuit resistance training (CRT) and high-intensity functional training (HIFT) on the activating factors of satellite cells in non-athlete young men.
Materials and Methods: In this semi-experimental study, with a pre-test, post-test, and control group, 45 non-athlete young men in 2022 were selected and divided into three groups randomly: HIFT (n= 15), CRT (n= 15), and control (n= 15). Both training programs were performed for eight weeks, three sessions per week, and 40 to 50 minutes each for the experimental groups. Blood sampling for measurement of MyoD and Myf-5 gens expression was done in two phases: pre-test and post-test. The expression level of the variables was estimated by the ELISA method using a microplate reader. The data were analyzed using the Covariance and Benferroni post hoc tests.
Results: The results of the study showed that both training methods had significant effects on increasing MyoD and Myf5 in non-athlete men (p=0.001). However, their improvements were higher in the HIFT group than in the CRT group (p=0.041).
Conclusion: These results show the effect of both training methods on increasing MyoD and Myf-5; however, high-intensity functional training was more effective in improving the mentioned variables. Therefore, coaches, athletes, and other officials involved in sports exercise are recommended to use these training methods, especially HIFT, in order to improve factors affecting satellite cells.

کلیدواژه‌ها [English]

  • High-Intensity Functional Training
  • Circuit Resistance Training
  • Satellite Cells
  • MyoD
  • Myf-5
  1. Sambasivan R, Yao R, Kissenpfennig A, et al. Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 2021; 138(17):3647–56.
  2. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2018; 2(1):22–31.
  3. Kadi F, Thornell L-E. Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochemistry and Cell Biology 2000; 113(2):99–103.
  4. Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends in Cell Biology 2015; 15(12): 666-673.
  5. Sabourin LA, Rudnicki MA. The molecular regulation of myogenesis. Clinical Genetics 2001; 57(1): 16-25.
  6. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, et al. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Experimental Cell Research 2002; 281(1): 39-49.
  7. Kardon G, Campbell JK, Tabin CJ. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Developmental Cell 2002;3(4):533-45.
  8. Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes & Development 2009 15;23(8):997-1013.
  9.  Schultz E. A quantitative study of satellite cells in regenerated soleus and extensor digitorum longus muscles. AR 2015; 208(4): 501-506.
  10. Parise G, McKinnell IW, Rudnicki MA. Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle & Nerve. 2008; 37(5): 611-619.
  11. Smith HK, Maxwell L, Rodgers CD, McKee NH, Plyley MJ. Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle. JAP 2001; 90(4): 1407-1414.
  12. Martin NRW, Lewis MP. Satellite cell activation and number following acute and chronic exercise: a mini review. Cell Mol Exerc Physiol 2012; 1(1): e3.
  13. Kurosaka M, Naito H, Ogura Y, Machida S, Katamoto S. Satellite cell pool enhancement in rat plantaris muscle by endurance training depends on intensity rather than dura tion. Acta Physiologica 2012; 205(1): 159-166.
  14. Fry CS, Noehren B, Mula J, Ubele MF, Westgate PM, Kern PA, et al. Fibre type specific satellite cell response to aerobic training in sedentary adults. JP 2014; 592(12): 2625-2635.
  15. Joanisse S, McKay BR, Nederveen JP, Scribbans TD, Gurd BJ, Gillen JB, et al. Satellite cell activity, without expansion, after nonhypertrophic stimuli. AJPREGU 2015; 309(9): R1101-1111.
  16. Bellamy LM. Temporal pattern of type II fibre-specific satellite cell expansion to exercise correlates with human muscle hypertrophy: potential role for myostatin. Presented for the Ph.D thesis. Hamilton, Ontario, Canada. McMaster University. 2012.
  17. Bruusgaard JC, Johansen IB, Egner IM, Rana ZA, Gundersen K. Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. PNAS 2020; 107(34): 15111-15116.
  18. Jensky NE, Sims JK, Dieli-Conwright CM, Sattler FR, Rice JC, Schroeder ET. Exercise does not influence myostatin and follistatin mRNA expression in young women. Journal of strength and conditioning research 2010;24(2):522.
  19. Walsh JJ, Bonafiglia JT, Goldfield GS, Sigal RJ, Kenny GP, Doucette S, et al. Interindividual variability and individual responses to exercise training in adolescents with obesity. Applied Physiology, Nutrition, and Metabolism. 2020;45(1):45-54.
  20. Feito Y., Heinrich K.M., Butcher S.J., Poston W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018;6(3):76.
  21. Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The effects of whey vs. pea protein on physical adaptations following 8-weeks of high-intensity functional training (HIFT): A pilot study. Sports 2019 4;7(1):12.
  22. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A Flexible statistical power analysis program for the social. Behavioral, And Biomedical Sciences. Behavior Research Methods 2007; 39(2): 175-191.
  23. Biglari S, Gaeini A, Mafi F. Effect of resistance training and dark chocolate extract supplementation on the level of plasma Myogenic Factor 5 and muscle strength in the elderly. Birjand University of Medical Sciences 2018; 25 (2): 114 – 123. [Persian]
  24. Moghaddam MB, Aghdam FB, Jafarabadi MA, Allahverdipour H, Nikookheslat SD, Safarpour S. The Iranian version of international physical activity questionnaire (IPAQ) in Iran: content and construct validity, factor structure, internal consistency and stability. WASJ 2012; 18 (8): 1073-1080.
  25. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. MSSE 2003;35(8):1381-95.
  26. Sobrero G, Arnett S, Schafer M, Stone W, Tolbert TA, Salyer-Funk A, Crandall J, Farley LB, Brown J, Lyons S, Esslinger T. A comparison of high intensity functional training and circuit training on health and performance variables in women: a pilot study. WSPAJ 2017 1;25(1):1-0.
  27. Izadi M, Habibi A, Khodabandeh Z, Nikbakht M. Simultaneous Effect of High Intensity Interval Training and Decellularized Amniotic Membrane Fluid Scaffold on Gene Expression of Cell Proliferation Factors of Satellite Cells in the Volumetric Muscle Loss Injury in the Tibialis Anterior of Rats: An Experimental Study. JRUMS 2019; 18 (9) :875-888. [Persian]
  28. Fathi, M., Gharakhanlou, R., solimani, M., rajabi, H., rezaei, R. The effect of resistance exercise on myoD expression in slow and fast muscles of wistar rats. JSB 2015; 6(4): 435-449. [Persian]
  29. Poole Chris N, Roberts Michael D, Dalbo Vincent J, Sunderland Kyle L, Hassell Scott E, Kerksick Chad M. "Effects Of Human Aging On CDK4, P21Cip1, P27Kip1, And MyoD Expression After Three Resistance Exercise Bouts". Medicine & Science 2010;10 (4):17–42.
  30. D Egan A, B Winchester J, Foster C, R McGuigan M. Using Session RPE to Monitor Different Methods of Resistance Exercise. JSSM 2006 1;5(2):289-95.
  31. Tabibi MA, mosavian A, gaeini A, Ghara khanlou R, nuri R, kordi M. The concurrent effect of eccentric resistance training and blood flow occlusion on STAT3 and MyF5 gene expressions affecting the activation of satellite cells growth in non-athletes. JSB 2020; 12(2): 143-154. [Persian]
  32. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, et al. STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nature medicine 2014;20(10):1182-6.
  33. Roberson K.B., Chowdhari S.S., White M.J., Signorile J.F. Loads and movement speeds dictate differences in power output during circuit training. JSCR 2017;31(10):2765–2776.
  34. Kliszczewicz B, Markert CD, Bechke E, Williamson C, Clemons KN, Snarr RL, et al. Acute effect of popular high-intensity functional training exercise on physiologic markers of growth. The Journal of Strength & Conditioning Research 2021;35(6):1677-84.
  35. Snijders T, Verdijk LB, Hansen D, Dendale P, van Loon LJ. Continuous endurance-type exercise training does not modulate satellite cell content in obese type 2 diabetes patients. Muscle Nerve 2010; 43(3): 393-401.